版權(quán)歸原作者所有,如有侵權(quán),請聯(lián)系我們

[科普中國]-氮化硅

科學(xué)百科
原創(chuàng)
科學(xué)百科為用戶提供權(quán)威科普內(nèi)容,打造知識科普陣地
收藏

歷史

亨利·愛丁·圣克萊爾·德維爾和弗里德里?!ぞS勒在1857年首次報道了氮化硅的合成方法。在他們報道的合成方法中,為減少氧氣的滲入而把另一個盛有硅的坩堝埋于一個裝滿碳的坩堝中加熱。他們報道了一種他們稱之為硅的氮化物的產(chǎn)物,但他們未能弄清它的化學(xué)成分。1879年P(guān)aul Schuetzenberger通過將硅與襯料(一種可作為坩堝襯里的糊狀物,由木炭、煤塊或焦炭與粘土混合得到)混合后在高爐中加熱得到的產(chǎn)物,并把它報道為成分是Si3N4的化合物。1910年路德維?!の核购吞貖W多爾·恩格爾哈特在純的氮?dú)庀录訜峁鑶钨|(zhì)得到了Si3N4。1925年Friederich和Sittig利用碳熱還原法在氮?dú)鈿夥障聦⒍趸韬吞技訜嶂?250-1300℃合成氮化硅。

在后來的數(shù)十年中直到應(yīng)用氮化硅的商業(yè)用途出現(xiàn)前,氮化硅未受到重視和研究。從1948年至1952年期間,艾奇遜開辦在紐約州尼亞加拉大瀑布附近的金剛砂公司為氮化硅的制造和使用注冊了幾項專利。1958年聯(lián)合碳化物公司生產(chǎn)的氮化硅被用于制造熱電偶管、火箭噴嘴和熔化金屬所使用的坩堝。英國對氮化硅的研究工作始于1953年,目的是為了制造燃?xì)鉁u輪機(jī)的高溫零件。由此使得鍵合氮化硅和熱壓氮化硅得到發(fā)展。1971年美國國防部下屬的國防高等研究計劃署與福特和西屋公司簽訂一千七百萬美元的合同研制兩種陶瓷燃?xì)廨啓C(jī)。

雖然氮化硅的特性已經(jīng)早已廣為人知,但在地球自然界中存在的氮化硅(大小約為2×5μm)還是在二十世紀(jì)90年代才在隕石中被發(fā)現(xiàn)。為紀(jì)念質(zhì)譜研究的先驅(qū)阿爾弗雷德·奧托·卡爾·尼爾將自然界中發(fā)現(xiàn)的此類氮化硅礦石冠名為“nierite”。不過有證據(jù)顯示可能在更早之前就在前蘇聯(lián)境內(nèi)的阿塞拜疆發(fā)現(xiàn)過這種存在于隕石中的氮化硅礦石。含有氮化硅礦物的隕石也曾在中國貴州省境內(nèi)發(fā)現(xiàn)過。除存在于地球上的隕石中以外,氮化硅也分布于外層空間的宇宙塵埃中。

晶體結(jié)構(gòu)和特性藍(lán)色圓球是氮原子,灰色圓球是硅原子

氮化硅(Si3N4)存在有3種結(jié)晶結(jié)構(gòu),分別是α、β和γ三相。α和β兩相是Si3N4最常出現(xiàn)的型式,且可以在常壓下制備。γ相只有在高壓及高溫下,才能合成得到,它的硬度可達(dá)到35GPa。

合成方法六方 β-Si3N4

可在1300-1400℃的條件下用單質(zhì)硅和氮?dú)庵苯舆M(jìn)行化合反應(yīng)得到氮化硅:

3 Si(s) + 2 N2(g) → Si3N4(s)

也可用二亞胺合成

SiCl4(l) + 6 NH3(g) → Si(NH)2(s) + 4 NH4Cl(s) 在0 ℃的條件下

3 Si(NH)2(s) → Si3N4(s) + N2(g) + 3 H2(g) 在1000 ℃的條件下

或用碳熱還原反應(yīng)在1400-1450℃的氮?dú)鈿夥障潞铣桑?/p>

3 SiO2(s) + 6 C(s) + 2 N2(g) → Si3N4(s) + 6 CO(g)

對單質(zhì)硅的粉末進(jìn)行滲氮處理的合成方法是在二十世紀(jì)50年代隨著對氮化硅的重新“發(fā)現(xiàn)”而開發(fā)出來的。也是第一種用于大量生產(chǎn)氮化硅粉末的方法。但如果使用的硅原料純度低會使得生產(chǎn)出的氮化硅含有雜質(zhì)硅酸鹽和鐵。用二胺分解法合成的氮化硅是無定形態(tài)的,需要進(jìn)一步在1400-1500℃的氮?dú)庀伦鐾嘶鹛幚聿拍軐⒅D(zhuǎn)化為晶態(tài)粉末,二胺分解法在重要性方面是僅次于滲氮法的商品化生產(chǎn)氮化硅的方法。碳熱還原反應(yīng)是制造氮化硅的最簡單途徑也是工業(yè)上制造氮化硅粉末最符合成本效益的手段。

電子級的氮化硅薄膜是通過化學(xué)氣相沉積或者等離子體增強(qiáng)化學(xué)氣相沉積技術(shù)制造的:

3 SiH4(g) + 4 NH3(g) → Si3N4(s) + 12 H2(g)

3 SiCl4(g) + 4 NH3(g) → Si3N4(s) + 12 HCl(g)

3 SiCl2H2(g) + 4 NH3(g) → Si3N4(s) + 6 HCl(g) + 6 H2(g)

如果要在半導(dǎo)體基材上沉積氮化硅,有兩種方法可供使用:

利用低壓化學(xué)氣相沉積技術(shù)在相對較高的溫度下利用垂直或水平管式爐進(jìn)行。

等離子體增強(qiáng)化學(xué)氣相沉積技術(shù)在溫度相對較低的真空條件下進(jìn)行。

氮化硅的晶胞參數(shù)與單質(zhì)硅不同。因此根據(jù)沉積方法的不同,生成的氮化硅薄膜會有產(chǎn)生張力或應(yīng)力。特別是當(dāng)使用等離子體增強(qiáng)化學(xué)氣相沉積技術(shù)時,能通過調(diào)節(jié)沉積參數(shù)來減少張力。

先利用溶膠凝膠法制備出二氧化硅,然后同時利用碳熱還原法和氮化對其中包含特細(xì)碳粒子的硅膠進(jìn)行處理后得到氮化硅納米線。硅膠中的特細(xì)碳粒子是由葡萄糖在1200-1350℃分解產(chǎn)生的。合成過程中涉及的反應(yīng)可能是:

SiO2(s) + C(s) → SiO(g) + CO(g)

3 SiO(g) + 2 N2(g) + 3 CO(g) → Si3N4(s) + 3 CO2(g) 或

3 SiO(g) + 2 N2(g) + 3 C(s) → Si3N4(s) + 3 CO(g)

特點(diǎn)除氫氟酸外,它不與其他無機(jī)酸反應(yīng)(反應(yīng)方程式:Si3N4+12HF═3SiF4↑+4NH3↑,抗腐蝕能力強(qiáng)。

應(yīng)用【氮化硅的應(yīng)用

氮化硅用做高級耐火材料,如與sic結(jié)合作SI3N4-SIC耐火材料用于高爐爐身等部位;如與BN結(jié)合作SI3N4-BN材料,用于水平連鑄分離環(huán)。SI3N4-BN系水平連鑄分離環(huán)是一種細(xì)結(jié)構(gòu)陶瓷材料,結(jié)構(gòu)均勻,具有高的機(jī)械強(qiáng)度。耐熱沖擊性好,又不會被鋼液濕潤,符合連鑄的工藝要求。見下表

|| ||

更多信息物理性質(zhì)相對分子質(zhì)量140.28?;疑咨蚧野咨?。屬高溫難溶化合物,無熔點(diǎn),抗高溫蠕變能力強(qiáng),不含粘結(jié)劑的反應(yīng)燒結(jié)氮化硅負(fù)荷軟化點(diǎn)在1800℃以上;六方晶系。晶體呈六面體。反應(yīng)燒結(jié)法制得的Si3N4密度為1.8~2.7g/cm3,熱壓法制得Si3N4密度為3.12~3.22g/cm3。莫氏硬度9~9.5,維氏硬度約為2200,顯微硬度為32630MPa。熔點(diǎn)1900℃(加壓下)。通常在常壓下1900℃左右分解。比熱容0.71J/(g·K)。生成熱為-751.57kJ/mol。熱導(dǎo)率為(2-155)W/(m·K)。線膨脹系數(shù)為2.8~3.2×10-6/℃(20~1000℃)。不溶于水。溶于氫氟酸。在空氣中開始氧化的溫度1300~1400℃。比體積電阻,20℃時為1.4×105 ·m,500℃時為4×108 ·m。彈性模量為28420~46060MPa。耐壓強(qiáng)度為490MPa(反應(yīng)燒結(jié)的)。1285℃時與二氮化二鈣反應(yīng)生成二氮硅化鈣,600℃時使過渡金屬還原,放出氮氧化物??箯潖?qiáng)度為147MPa。可由硅粉在氮?dú)庵屑訜峄螓u化硅與氨反應(yīng)而制得。電阻率在10^15-10^16Ω.cm。1可用作高溫陶瓷原料。

生產(chǎn)方法氮化硅陶瓷制品的生產(chǎn)方法有兩種,即反應(yīng)燒結(jié)法和熱壓燒結(jié)法。反應(yīng)燒結(jié)法是將硅粉或硅粉與氮化硅粉的混合料按一般陶瓷制品生產(chǎn)方法成型。然后在氮化爐內(nèi),在1150~1200℃預(yù)氮化,獲得一定強(qiáng)度后,可在機(jī)床上進(jìn)行機(jī)械加工,接著在1350~1450℃進(jìn)一步氮化18~36h,直到全部變?yōu)榈铻橹埂_@樣制得的產(chǎn)品尺寸精確,體積穩(wěn)定。熱壓燒結(jié)法則是將氮化硅粉與少量添加劑(如MgO、Al2O3、MgF2、AlF3或Fe2O3等),在19.6MPa以上的壓力和1600~1700℃條件下壓熱成型燒結(jié)。通常熱壓燒結(jié)法制得的產(chǎn)品比反應(yīng)燒結(jié)制得的產(chǎn)品密度高,性能好。附表1中列出了這兩種方法生產(chǎn)的氮化硅陶瓷的性能。

其他應(yīng)用氮化硅陶瓷材料具有熱穩(wěn)定性高、抗氧化能力強(qiáng)以及產(chǎn)品尺寸精確度高等優(yōu)良性能。由于氮化硅是鍵強(qiáng)高的共價化合物,并在空氣中能形成氧化物保護(hù)膜,所以還具有良好的化學(xué)穩(wěn)定性,1200℃以下不被氧化,1200~1600℃生成保護(hù)膜可防止進(jìn)一步氧化,并且不被鋁、鉛、錫、銀、黃銅、鎳等很多種熔融金屬或合金所浸潤或腐蝕,但能被鎂、鎳鉻合金、不銹鋼等熔液所腐蝕。

氮化硅陶瓷材料可用于高溫工程的部件,冶金工業(yè)等方面的高級耐火材料,化工工業(yè)中抗腐蝕部件和密封部件,機(jī)械加工工業(yè)的刀具和刃具等。

由于氮化硅與碳化硅、氧化鋁、二氧化釷、氮化硼等能形成很強(qiáng)的結(jié)合,所以可用作結(jié)合材料,以不同配比進(jìn)行改性。

此外,氮化硅還能應(yīng)用到太陽能電池中。用PECVD法鍍氮化硅膜后,不但能作為減反射膜可減小入射光的反射,而且,在氮化硅薄膜的沉積過程中,反應(yīng)產(chǎn)物氫原子進(jìn)入氮化硅薄膜以及硅片內(nèi),起到了鈍化缺陷的作用。這里的氮化硅氮硅原子數(shù)目比并不是嚴(yán)格的4:3,而是根據(jù)工藝條件的不同而在一定范圍內(nèi)波動,不同的原子比例對應(yīng)的薄膜的物理性質(zhì)有所不同。

用于超高溫燃?xì)馔钙剑w機(jī)引擎,電爐等。2

結(jié)構(gòu)正八面體的兩個頂是Si,四個N就是八面體的中間平面的4個點(diǎn),然后以這四個N產(chǎn)生的平面的中心,就是最后第三個Si了。一定要確認(rèn)每個Si都連著四個N,每個N都連著3個硅,N-N之間沒有連接

材料性能氮化硅的強(qiáng)度很高,尤其是熱壓氮化硅,是世界上最堅硬的物質(zhì)之一。它極耐高溫,強(qiáng)度一直可以維持到1200℃的高溫而不下降,受熱后不會熔成融體,一直到1900℃才會分解,并有驚人的耐化學(xué)腐蝕性能,能耐幾乎所有的無機(jī)酸和30%以下的燒堿溶液,也能耐很多有機(jī)酸的腐蝕;同時又是一種高性能電絕緣材料。

氮化硅 - 性質(zhì) 化學(xué)式Si3N4。白色粉狀晶體;熔點(diǎn)1900℃,密度3.44克/厘米(20℃);有兩種變體:α型為六方密堆積結(jié)構(gòu);β型為似晶石結(jié)構(gòu)。氮化硅有雜質(zhì)或過量硅時呈灰色。

氮化硅與水幾乎不發(fā)生作用;在濃強(qiáng)酸溶液中緩慢水解生成銨鹽和二氧化硅;易溶于氫氟酸,與稀酸不起作用。濃強(qiáng)堿溶液能緩慢腐蝕氮化硅,熔融的強(qiáng)堿能很快使氮化硅轉(zhuǎn)變?yōu)楣杷猁}和氨。氮化硅在 600℃以上能使過渡金屬(見過渡元素)氧化物、氧化鉛、氧化鋅和二氧化錫等還原,并放出氧化氮和二氧化氮。1285℃ 時氮化硅與二氮化三鈣Ca3N2發(fā)生以下反應(yīng):

Ca3N2+Si3N4─→3CaSiN23

氮化硅的制法有以下幾種: 在1300~1400℃時將粉狀硅與氮?dú)夥磻?yīng); 在1500℃時將純硅與氨作用;

在含少量氫氣的氮?dú)庵凶茻趸韬吞嫉幕旌衔?將SiCl4的氨解產(chǎn)物Si(NH2)4完全熱分解。氮化硅可用作催化劑載體、耐高溫材料、涂層和磨料等。

氮化硅陶瓷具有高強(qiáng)度、耐高溫的特點(diǎn),在陶瓷材料中其綜合力學(xué)性能最好,耐熱震性能、抗氧化性能、耐磨損性能、耐蝕性能好,是熱機(jī)部件用陶瓷的第一候選材料。在機(jī)械工業(yè),氮化硅陶瓷用作軸承滾珠、滾柱、滾球座圈、工模具、新型陶瓷刀具、泵柱塞、心軸 密封材料等。

在化學(xué)工業(yè),氮化硅陶瓷用作耐磨、耐蝕部件。如球閥、泵體、燃燒汽化器、過濾器等。

在治金工業(yè),由于氮化硅陶瓷耐高溫,摩擦系數(shù)小,具有自潤滑性。對多數(shù)金屬、合金溶液穩(wěn)定,因此,可制作金屬材料加工的工模具,如撥菅芯棒、擠壓、撥絲模具,軋輥、傳送輥、發(fā)熱體夾具、熱偶套營、金屬熱處理支承件、坩堝,鋁液導(dǎo)營、鋁包內(nèi)襯等。

氮化硅陶資材料在電子、軍事和核工業(yè)方面也有廣泛應(yīng)用。

1、氮化硅陶瓷粉末的物理化性能及產(chǎn)品的技術(shù)指標(biāo)

氮化硅陶瓷是一種白灰色粉末,分子式為:SI3N4 ;

分子重量:140.3 , 密度3.2g/cm3

其化學(xué)成分:N>38-39;0